首页 > 资讯 > 留学|News

神经科学专业美国研究生:申请美国 PhD 神经科学专业

admin 留学|News 2021-06-04 11:50:18 神经科学

申请美国 PhD 神经科学专业

而且GPA成绩有点低,托福成绩和GRE成绩符合要求,在中科院工作,工作背景可以,能否说明你在中科院具体的工作职位和部门呢,推荐信拿到国内两位大牛,国外一位教授,请问国外的这位教授是美国前二十名大学的教授吗?如果国外教授是美国前二十名大学的教授。

美国大学本科有神经科学专业么

IL

求美国神经生物学大学排名

美国医学院对于接受国际生一直要求极为严格,如果想以后申请医学院,现在可以学习一下生物,以后可以往药学方向申请,也可以考虑往生物医学工程方面申请。本科即大学本科专业学历,一般由大学或学院开展,极少部分高等职业院校已经开展应用型本科教育。本科教育重于理论上的通识教育,应用上的专业教育和实际技能相对较弱。

本人目前在美国读生物本科 想毕业后从事神经科学方面的研究 请问需要进美国医学院么?

美国医学院对于接受国际生一直要求极为严格,要申请确实很难,如果想以后申请医学院,现在可以学习一下生物,以后可以往药学方向申请,如果不一定是医学院,也可以考虑往生物医学工程方面申请。 本科即大学本科专业学历,是高等教育的基本组成部分,一般由大学或学院开展,极少部分高等职业院校已经开展应用型本科教育。 本科教育重于理论上的通识教育,应用上的专业教育和实际技能相对较弱,学生正常毕业后一般可获本科毕业证书和学士学位证书。

到美国攻读认知神经科学或神经生物学方面的研究生,本科阶段应该选什么专业比较对口

建议在本科学生物专业或者神经学专业比较对口。

耶鲁大学神经科学专业怎么样

神经科学是指寻求解释神智活动的生物学机制,神经科学寻求了解在发育过程中装配起来的神经回路是如何感受周围世界、如何实施行为的,它们又如何从记忆中找回知觉,神经科学也寻求了解支持我们情绪生活的生物学基础,情绪如何使我们的思想改变颜色。

美国的计算神经科学博士生活是什么样的?

商业转载请联系作者获得授权,非商业转载请注明出处。计算神经科学是我一直想说的一个话题,借着回答别人的问题说了一下,我只是把我的答案发上来。美国的计算神经科学博士生活是什么样的?- 留学个人觉得前面几个人都没有真正回答楼主的问题,但是身边无论是faculty还是学生在这个领域的都接触了不少,根据楼主的需求谈一谈对这个领域的理解。在回答问题之前,这个term其实是个非常新的词,其内容已经和现在的最新发展严重脱节,说明本身这是个定义快速变化发展的领域。同时需要和另一个词『bioinformatics』做出细微区分,都是计算方法在生物领域的应用,所以做computational neuroscience的人一般不说自己是做『bioinformatics』广义的Computational Neuroscience (CN),其实就是指运用计算模型(具体有machine learning,applied math相关知识) 解答神经科学问题,从这个定义来讲其实很多神经科学家都算,也的确很多人把computational neuroscience这一条加到自己的CV和研究介绍里。前者分析数据建模推崇理论,但是自己几乎从来不做实验直接验证,神经科学数据(比如电生理数据)的记录主要由后者来完成。狭义的CN研究者在整个神经科学家的队伍中只占小部分,我推测你可能是个国内高校的学生,希望申请北美狭义的CN PhD,以下的讨论也基于这个前提。录取难度个人觉得挺难。难在交叉背景。这个领域要求既要有神经科学知识,也要数学计算机的知识。难点具体来说有这么几点。1. 在目前国内的院系建构内,前者可能是在生物系,后者可能是在应用数学,从操作层面来说就不是很容易。有些学校有双学位或者辅修制度,很难有这个意识去主动的同时对这两个方向做知识储备,3. 我觉得更重要的难点在于,很多学校要求本科生科研,国内几乎找不到研究computational neuroscience导师。目前只有北师大的脑科学所的吴思老师,中科大的温泉老师,还有上海交大的David Cai等少数人算是很这方面很优秀的科学家,勾指头算我都觉得不超过10个人。光上基础课程对CN完全不会有概念,必须要一个导师一样的人带你入门才行。但是他们还是在做engineering。简单区分的话来看他们发表文章主要是在神经科学期刊上还是工程学期刊上。这还不是北美尤其是Xun Huang转载的博客里所说的CN。神经科学背景和数学计算机背景只能选其一的话,其实国内院校数学。那么其实学习起来不是那么困难,毕业 和别的神经科学方向并无本质区别。如果你本科是生物背景,要去补数学知识,从现实来看,经常看见计算背景的人转到神经科学领域,往往都成了大牛。极少有生物医学背景的人来做这个,因为目前整体生物医学训练(包括心理学)中,对数学能力的要求实在太低。身边就有CN的PHD,也认识很多CN的PHD朋友,有一点不一样的就是他们几乎从来不做实验,想算法,分析别人的实验数据,和我这样的实验狗有一点区别。做CN的人往往和做实验的experimentalist紧密合作,不过目前国内还没有这个意识。就业情况分两部分,工业界和学术界工业界做CN在工业界一直非常好就业,尤其是在最近几年的大数据背景之下。个人觉得CN和目前最火的deep learning就是一个硬币的两面。Deep learning本身就是做CN的人发明的,计算神经科学家和做AI的计算机科学家本来就是一拨人,后来在90年代才逐渐分化开。Geffoery Hinton和Terry Sejonwski在80年代做了大量的理论奠基,后来Hinton逐渐往计算机领域靠拢,Sejonwski则继续留在了神经科学领域。在计算机领域neural network不受待见,直到最近又死灰复燃,但是在神经科学领域人们这么30多年来一直在坚持用neural network这种approach,因为本来大脑就是这么工作的嘛。还有一个例子就是UCL毕业的Demis Hassabis,PhD是做CN的,是世界上少数的顶尖AI科学家。学术界大数据和machine learning的发展最近几年也渗透到了学术界,很多神经科学家们招phd和postdoc都偏向于招有计算背景的人,哪怕你不懂神经科学技术。你懂计算还可以补习神经科学知识,你只懂神经科学老板就没耐性补习你数学知识了。本人曾经想postdoc转行做狭义的CN,CN的faculty职位哪怕在最近几年大量增加,只有少数综合实力很强的大学和研究机构有能力设置这样一个职位。做狭义的CN有一个致命弱点,就是你必须要和experimentalist合作,有了data你才能发真正不错的paper,所以必须依靠别人的data,没法独立。在学术界要求文章数量和质量的时候,这一行稍微有点吃亏。目前在中国做这方面研究的人很少,前面讲了,所以北美哪怕读CN PhD的中国学生就很少,回国的就更少。一般国内优秀的数学或者计算机专业的毕业生,基本也都被BAT挖走了,谁还会有心转行学点神经科学?

版权声明

本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:https://www.wuliandi.com/edu-news/international/398640.html

作文素材网 - 让教育更简单

https://www.wuliandi.com/

新ICP备18000016号-1

Powered By 作文素材网版权所有